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Abstract

Two methods of reducing state matrix equations containing several

parameters are presented in this thesis. Pursuant to the first method,

the solutions, obtained by iterative and non-iterative methods, of the

algebraic Riccati matrix equation and Lyapunov matrix equation are relied

upon heavily. The second method hinges on an equivalence transformation

to a Smith form, coupled with the notion of zeros of a matrix. Main

results focus on the two parameter case but can be extended to any

number of parameters.
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REDUCIBILITY OF MATRIX EQUATIONS CONTAINING

SEVERAL PARAMETERS

I. Introduction

Reducibility of the equation

= Ax (1.0)

where A is a constant matrix has been widely studied. Classical methods

for solving Eq (1.0) involved the use of similarity transforms using

eigenvectors and eigenvalues. One wishes to reduce A to a sparser form,

maybe block diagonal or even diagonal form to ease computation time,

memory requirements, and cost of solving Eq (1.0). Much study has been

done for the case where matrix contains polynomial elements of a single

parameter, see Jones (Ref 13) or Browne (Ref 8:138-149) for example.

Presently, there is no known method for reducing matrix equations that

have polynomial elements in many parameters, say zlZ 2 ,..q , orz for

short. It is the purpose of this thesis to provide a method for reducing

matrix equations in several parameters. The main emphasis will deal with

the two-parameter case, and the extension to the multi-parameter case

can be done by induction using the basic results found here.

Throughout this thesis it will be assumed that matrices can be

rectangular and belong to the ring R[z]. Also, conditions of stability

and nonsingularity in coefficient matrices will not be imposed.

Two methods of reduction will be presented: (1) the Riccati-

Lyapunov Method and (2) the Smith Form Method. Iterative and non-

iterative solutions of the Riccati and Lyapunov equations pertaining

to the first method will be dealt with in Chapter I. Chapter III shows
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how to reduce a system using 
method (1) and miethod (2),* and gives an

appl.ication~ to singular systems. 
Finally, Chapter IV summarizes 

what

has been done and gives recommendations 
for future study.



II. Solutions of Riccati and Lyapunov Equations

The purpose of this chapter is to present new and existing methods

for obtaining solutions to the algebraic Riccati matrix equation and the

Lyapunov matrix equation. Section 1 will deal with the Riccati equation,

presenting four methods of solution. The first method will use general-

ized inverses in its solution. The second method will implement a

function of a matrix polynomial to obtain its solution. The third

method draws upon a power series expansion to arrive at its solution.

Finally, the last method utilizes an iterative technique to zero in on

a solution. Each method will be followed by an example. Section 2 deals

with solutions of the Lyapunov matrix equation. Since the form of the

Lyapunov equation is closely tied to the Riccati equation, the methods

developed in Section 1 will also apply for solving the Lyapunov equation.

An additional method for solving the Lyapunov equation that will be

presented is the Idempotent-Nilpotent method. Examples will follow,

including a case involving one parameter.

Section 1. Solutions of Riccati Matrix Equations

The Riccati matrix equation occurs most commonly in modern control

theory, in the design of optimal controllers (Ref 24:18) and estimators

(Ref 29) for linear time-invariant systems with quadratic cost. Other

uses of the Riccati equation arise from singular perturbation methods

(Ref 25) and filtering theory (Ref 20). New uses of the Riccati

equation crop up in particle beam transport processes (Ref 6:28). The

form of the steady state of algebraic Riccati matrix equation we will

use is basically the following:

3



AX + XB + C + XDX= 0 (2.0)

Other equations similar in structure to Eq (2.0) will follow. The form

of Eq (2.0) actually comes from

ATK + KA - KBR-1BTK + Q - 0 (2.1)

which is a result of a minimization of a quadratic cost function that

is related to the linear constant dynamical system

x(t) = Ax(t) + Bu(t), x(t0) = x 0  (2.2)

Generalized Inverse Method. The emergence of generalized inverses

came about to fill the void in the solution methodology of systems with

singular or rectangular matrix coefficients. Applications of generalized

inverses include iterative methods for solving nonlinear equations,

interval linear programming, integral solution of linear equations

(Ref 7:27,90,93,96), estimation theory (Ref 10:1) and systems science

(Ref 21).

For every finite matrix A (not necessarily square) whose elements

contain coefficients belonging to the set of complex numbers, there

exists a unique matrix X satisfying the four Penrose equations (Ref 7:7):

AXA - A (2.3)

XAX - X (2.4)

(AX)* - AX (2.5)

(XA)* - XA (2.6)

where A* denotes the conjugate transpose of A. The matrix X - A

4
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satisfying Eq (2.3) is called a generalized inverse or a 1-inverse,

not necessarily unique. The matrix X = Ar, not necessarily unique,

satisfying Eqs (2.3), (2.4) is called a reflexive generalized inverse

or a 1,2-inverse. The matrix X = Aw, not necessarily unique, satis-

fying Eqs (2.3), (2.4), (2.5) is called a left-weak generalized inverse

of a 1,2,3-inverse. The matrix x = An , not necessarily unique, satis-

fying Eqs (2.3), (2.4), (2.6) is called a right weak generalized inverse,

+
or a 1,2,4-inverse. Finally, the matrix X - A satisfying Eqs (2.3)

+

through (2.6) is called a Moore-Penrose inverse. The matrix A is

A-I
unique, and is the same as A , the ordinary inverse (Ref 7:7).

Theorem 2.1

X is a solution of the equation

AX + XB + C - XDX = 0 (2.7)

iff

(A-I)K(LDK) rL + K(LDK) rLB + C = 0 (2.8)

where

X = K(LDK) rL (2.9)

and K and L are arbitrary matrices of appropriate dimension. Equation

(2.8) is called a consistency condition for Eq (2.7).

Proof (Necessity)

Substituting Eq (2.9) into Eq (2.7) we have

AK(LDK) rL + K(LDK) rLB + C - K(LDK) rLDK(LDK) rL = 0 (2.10)

5



Using Eq (2.5) we have

AK(LDK) L + K(LDK) LB + C - K(LDK) L 0
r r r (.1

(A-I)K(LDK) rL + K(LDK) rLB + C = 0 (2.12)

Proof (Sufficiency)

Expanding Eq (2.8) we have

AK(LDK)L - K(LDK)L + K(LDK)LB + C = 0 (2.13)

AK(LDK) rL + K(LDK) rLB + C - K(LDK)r LDK(LDK) rL 0 (2.14)

Comparing Eq (2.14) with Eq (2.7) we have X = K(LDK) rL.

Method for Obtaining A . One of the best existence theorems of a

generalized inverse is given by Jones (Ref 14). The following treatment

draws upon the work done by Jones. Getting the reflexive inverse is

easy once you have generated two distinct generalized inverses or

1-inverses. Let AIand A2 be two 1-inverses to find. We can find two

non-singular matrices P and Q such that

PAQ = (2.15)
o0 0

where r is the rank of A, then A1  is given by

Ai Q r 1 P (2.16)

for arbitrary Ul, Vl, W1 of appropriate dimension. Similarly
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A2-  Q Q (2.17)
v 2  W 2

for arbitrary U2, V2, W2. Now that we have two 1-inverses we can

generate A by the following equation:r

A -AI-AA (2.18)

See Sontag (Ref 27) for obtaining the generalized inverse of matrices

containing parameters.

Example 2.1

Let

A [) B [ C [] D [ (2.19)
-1 2i -. 1

Then a solution to AX + XB + C - XDX 0 is given by X - K(LDK) rL iff

Eq (2.6) holds. Choosing

K - I L 3 (2.20)

we have

(A-I)K(LDK) rL + K(LDK) rLB + C - 0 (2.21)

Hence

X K(LDK)r L (2.22)

7



As an extension to Eq (2.5) consider the generalized Riccati

matrix equation of order three in the following theorem:

Theorem 2.2

X is a solution of the equation

AX + XB + C - XDX - XEXFX - 0 (2.23)

iff

(A-I-K(LEK) rLF)K(LEK) rL + K(LEK) rL(B+DK(LEK) rL) + C - 0 (2.24)

where

X - K(LEK) rL (2.25)

Proof follows by similar methods in the proof of Theorem 2.1.

This method of solution can be extended co fourth and higher order

equations. As the order of the generalized Riccati matrix equations

increases, so increases the complexity of the consistency condition,

placing tighter constraints on X. This implies it will be less easy to

find matrices K and L to fit the consistency conditions corresponding

to their appropriate equations. As the notion is rather intuitive, no

proof will be given.

Example 2.2

Let r 3/2 1 [-11/4 -11/4] [1 11

1 1/2 21 J -5/2 -5/2 1 [1

D E 11 F [ ] (2.26)

8



Then a solution to AX + XB + C - XDX - XEXFX = 0 is given by

X = K(LEK) rL iff Eq (2.20) holds. Choosing

K - I L ] (2.27)

we have

(A-I-K(LEK) LF)K(LEK) L + K(LEK) rL(B+DK(LEK) L) + C - 0 (2.28)A--K(E)rLF r LK r r

Hence

X = K(LEK) L h P (2.29)

f(R) Method. This method relies on the formation of a state matrix

similar in form to the one in the Hamiltonian system of equations.

Referring back to the linear system in Eq (2.2), one can form the control

Hamiltonian (Ref 2:238) and obtain the Hamiltonian system of equations:

-A BRIBTJ[,J = H[] (2.30)

The similar system we will use is the following:

(D -B D] (2.31)

Jones (Ref 13) has an excellent paper on the necessary and suffi-

cient conditions concerning solutions to Eq (2.0). Dolan (Ref 11:65)

9



has extended Jones' treatment of the cases involving square matrices to

the rectangular case.

Theorem 2.3 (Jones (Ref 13)

Let f y(X) be any polynomial of degree n > 1 in with coefficients

belonging to the field of complex numbers such that for square matrices

A, B, C, D,

R [ ] ], fy(R)= (2.32)
-C A M N

Then a solution of

(XI)fy (R) = (2.33)
10

with U-1 or M- I existing, or a solution of

f (R) = 1 (2.34)

-1 -11

with M-1 or N-1 existing is also a solution of Eq (2.0).

Experience in using this method has shown that Jones' theorem will

not always work even if U-1 or M-1 or N-1 exists. An example of the

inadequacy of Jones' theorem will follow after slight modification.

Theorem 2.4

Let fy () be any polynomial of degree n _> 1 in X with coefficients

belonging to the field of complex numbers such that R and f(R) are as

given in Eq (2.32). Then a common solution to Eq (2.33) with U
-1 or M-1

10



existing and/or to Eq (2.34) with M -I or N -1 existing is also a solution

of Eq (2.0).

This method finds all solutions that Martensson's method (Ref 24)

can find plus more. Illustration of the theorem is followed by an

example from Martensson rewritten to conform with Eq (2.0).

Example 2.3 (Ref 24:31-32)

Let

A = ] B C= 0] D [ ](2.35)

0 1 0 1 0 3-1 -1

Then

-2 0 -1 -1

R - -B D] 0 1 -1-1 (2.36)

-C A0 0 2 0

0 -3 0 -1

and

det(R- I) - (X2 4)2 (2.37)

The polynomials f y() are found by constructing a multiplication

table consisting of the distinct factors of the characteristic poly-

nomial, i.e.,

i0

11



Table I

Multiplication Factor Table of Eigenvalues of R

X X-2 X+2

X-2 (A-2)2  X 2-4

X+2 X2 -4 (X+2)
2

Examining the upper or lower triangular portion of the table we find

that there are three distinct matrix polynomial cases to consider:

Case 1 f (R) - R2 - 41Y

Case 2 f (R) - R2 _ 4R + IY

Case 3 f (R) - R2 + 4R + 41 (2.38)-'Y

Case 1. R - 41

4 3 0 3 1 0 00 0 3 0 3

0 4-3 0 0 1 0 0 0 0 -3 0 U M]

01 4 0 0 (2.39)

0 0 3 4 0 0 0 1 0 0 3 0

. .[. ((2.40)X -M1 1/03 0 1--[o _03 [o 1 0
X- M-1 u 13 - [ 0 (2.41)

1/3 0 0

12 i



Case 2. R2  4R + 41

[16 3 4 7

0 of [U
4 N(2.42)

0 0 4 0 V N

0 0 3 4

X -4

- [ ] 1/6 [4 j3 0 1/9 (2.43)
S2 0 16 0 -3

-1 = 1/9 [ 4] 41 = 1/9 E_64 -16 (2.45)
1 4 04 -16 13

Case 3. R2 + 4R + 41

0 3 -4 -1

012-7-4 (2.46)

0 0 16 0 V N

0 -12 3 4

-NM-1 [16 [-4 1] [_64 -161
X• -N , - [ I/91 J, 1/9 -1 3J (2.47)

3- 74 -16 13

X = M-IU - 1/9 [- _][: 13] [ 3 (2.48)
-71 0 2 0 3

Examining the common solutions to the above three cases we find three

solutions satisfy Eq (2.0):

13



X 1 X2 = X3 a 1/9 [_6 13 (2.49)
0 1 0 3 -16 13

Note that because of the noncommonality of X in Eq (2.44), it is not a

solution to Eq (2.0) as Jones claims, even though M-1 exists. Also let

it be known that Martensson's method only gave solution XI.

The next theorem is a slight modification of a theorem by Dolan

(Ref 11:65), who treats the rectangular case. An example follows.

Theorem 2.5

Let f (X) be any polynomial of degree n Z 1 in X such that R andY

f y(R) are as given in Eq (2.32) for Amxm, Bnxn, Cmxn, D nxm . Then a

common solution to Eq (2.33) with U-1 existing and/or to Eq (2.34) with

N-1 existing for Xmx is also a solution to Eq (2.0).

Example 2.4

Let

A [-11 B- C - (0 -11 D (2.50)

Then
.-3 -1-2

R i -2 0 (2.51)

and

det(R-XI) - (X+3)(X+2)(X+1) (2.52)

Using Theorem 2.5, two solutions to Eq (2.0) are

14



x1- [0 1bX,2  01 (2.53)

Beavers and Denman (Ref 4:340), using a similar partitioning scheme

to our matrix R, claim that if there are 2n distinct eigenvalues of R

then there are 2nCn = (2n)!/(n!n!) possible solutions to an nxn matrix

Riccati equation. Then they show an example (Ref 3:141-143) for n = 2,

constructing six solutions. Let it be known that only two of the six

claimed solutions actually satisfy the matrix Riccati equation, and that

those two solutions were readily found by the f(R) method. A better

proposal to the number of possible solutions is the following: For any

matrix R, if there are p distinct eigenvalues of R, then the number of

possible solutions is given by p(p+l)/2. It is easy to derive this number

by examining the Multiplication Factor Table of the eigenvalues of R.

Power Series Method. This method relies on a power series solution

to solve Eq (2.54) and Eq (2.55). As the quadratic has been studied by

Dolan (Ref 11) and the cubic case by Leuthauser (Ref 18), the extension

to the fourth order case will be presented. Note that the higher order

case can be reduced to the Riccati or Lyapunov equation by setting the

coefficient matrices of those terms to zero. Consequently, this method

can be extended to cases involving fifth order terms to finally nth order

terms. The Eqs (2.54) and (2.55) arise from the transport equation of

particles involving three scattering processes (Ref 28:633). What

follows is an extension of Leuthauser (Ref 18:59-64).

Theorem 2.6

Consider the equations

A *AAA A AAAA

AX - XB - C + XFX + XDXEX + XLXGXHX (2.54)

15



AY - YB - C + YFY + YDYEY + YLYGYHY (2.55)

Equation (2.54) has a solution X, and Eq (2.55) has a solution Y if the

equation

(A-XI)X(X) - Y(X)(B-XI) = C + XFX + XDXEX + XLXGXHX (2.56)

have solutions X(X) and Y(X) where

X(X) = X0 + XxI + X
2x2 + ... + XPXp (2.57)

Y(A) = Ya + XY1 + X2Y2 + + XPYp (2.58)

Then X and Y are given by

2 2
X X 0 + x B +XB + .. +XpB (2.59)

A A2
Yo + AY 2 +  "'"+ + APY (2.60)

To obtain the Xi and Yi we must examine Eq (2.56). Equating coefficients

of like powers of X we have the following set of equations:

AX0  - Y0B C + XFX + XDXEX + XLXGXHX
o0

AXI - X - YIB + Y -
-0

AX2  - XI - Y2B + -o

* . . (2.61)

AXp-1 - xp- 2  Yp-1B + Yp-2 a 0

AX - X - YpB + Y " 0

-x +Y -0
p P

Multiplying the equations in Eq (2.61) on the right by 1, B, B2

B P+  gives

16



AX0  - Y0B = C + XFX + XDXEX +XLXGXfX

AX1B - X0B - YIB2 + Y0B = 0

AX2B2 - X1B2 - Y2B 3  + Y1B2  M 0

(2.62)

Ap-l Bp- 1 - Xp-2BP-1 - YP-1 B p + Yp-2 BP- 1 = 0

AX Bp  - xpIBP - YpB +I + Y p- Bp  = 0

- X Bp+l + Y Bp+l = 0
p p

Columnwise addition gives

[AX0 + AX1B + AX2B 2 + + AX-1BP-1 + AXpB P]

IXoB + X1B2 + + xBP-1 + X BP + XBP+lI
L0 + 1  p-2 p-i p

A A% A A% A A% A A

= C + XFX + XDXEX + XLXGXHX (2.63)

Factoring, we have

A(X0  B XB+ X2B2 + .. + Xp_1BP-1 + XPBp)

(x0 + X1B + + Xp-2 Bp-2 + Xp-iBP-1 + XpBP)B

- C + XFX + XDXEX + XLXGXHX (2.64)

Thus we see that X is a solution to Eq (2.54). Similarly we can derive

Y as a solution by multiplying the equations in Eq (2.61) on the left by

2
I, A, A2 , ... , Ap +I and adding columnwise. This gives

A[Y 0 + AY1 + A2Y2 + ... + AP-IypIAPYP+I

-[YO0 + AYI1 + A 2 Y2 + "' + Ap-lYp-I + APY p+I]IB

A A A A

= C + YFY + YDYEY + YLYGYHY (2.65)

17



I II I J

insuring that Y is a solution to Eq (2.55).

Example 2.5

Let

o] - - - 36 -66

10 0 -2 -22 -3

E= [ ]F== [ ] L = G =H (2.66)

1 0 i1 0 0

in the equations

AX - XB = C + XFX + XDXEX + XLXGXHX (2.67)

AY - YB = C + YFY + YDYEY + YLYCYHY (2.68)

Then for p - 3

x(X) [1 J + [ ] +X2 j +X3 0]
1010 0 0 1i 00

Y( - + X 4 + X2 - ] + [1 :1(2.70)

3 2- I10

Hence

X-X 0 + XB +XB + X3B - (2.71)
05

*2 3 [- 8

Y-Y +AY1 + A2Y2 + A3Y3 (2.72)

Note that we could choose as many or as few terms we wish by adjusting p.

18



Iterative Method. This method for solving the Riccati was origi-

nally investigated by Leuthauser (Ref 18:56-58) and Dolan (Ref 11:37-41+)

using ideas from Lancaster (Ref 17). A program was written in Fortran

using double precision arithmetic and implemented on the CDC 6600.

Computer Processor (CP) time per iteration was very small, averaging a

miniscule two thousandths of a second.

Theorem 2.7 (Leuthauser (Ref 18:50-58))

If f(z) = (z+a)(z-a) where a # 0 and a is real, and if

f(A) = (al-A) (al+A) - U (2.73)

f(B) = (al+B)(aI-B)- = V (2.74)

where a is chosen such that (al-A)- and (al-B)- I exist, then a solu-

tion of

X = UXV (U-I) (C+XDX) (V-I) (2.75)

is also a solution of

AX + XB - C + XDX (2.76)

We can adjust parameter "a" to speed convergence. See Leuthauser (Ref

18:56-57 ) for proof. If conditions in Theorem 2.7 hold, then we can

obtain a recursive formula for X:

X+l UX V -L (U-I) (C+X DXn) (V-1) (2.77)

Reinvestigating the examples from Martensson (Ref 24:31-32+), we find

that we can obtain more solutions than Martensson could find and obtain

a greater accuracy and faster convergence for those examples than could

19



Dolan (Ref 11:71). Rewriting Martensson's example (Ref 24:44) to fit

Eq (2.0) we have the following:

Example 2.6

A = B =]C= D [ ](2.78)
1 0 1-1 0 1

Martensson's eigenvalue-eigenvector method shows two non-negative

definite solutions X and X2 where

F3+v' 1+V'1v5. 
/~+X I X2  (2.79a)1 i+v' !V 2 L -i/2+l v5*-iJ

Dolan, using Eq (2.77) and single precision arithmetic, arrived at" two

solutions X2 and X3, where

X2  X3 =1 (2.79b)
-.414 .414 2.41 -2.41

using an initial matrix of zero for both solutions. Solution X2 was

arrived at in 4 iterations using a = 3, while X3 was obtained in 8

iterations with a = -7. Although Dolan found solution X3 that Martensson

could not find, he could not find solution XI. The authorts attempts at

this example were very successful. Three solutions of Eq (2.76) were

found. Double precision arithmetic and sixteen place accuracy were

used. Results follow:

1 4.414213562373095 2.414213562373095]xI - (2. 80a)
2.414213562373095 2.414213562373095

20



using

x0  E a .133

x .414213562373095 -.4142135623730951 28b

x2 =I (22802

-.414213562373095 .414213562373095

using

X0  [ , a - .2977

2.414213562373095 -2.414213562373095

using

X0 a = -.

Number of iterations to converge were six for Xl, seven for X2 and eight

for X Note that this attempt produced the intersection of solutions

from Martensson and Dolan. One can see that for different values of a

and identical starting points we can arrive at different solutions.

Also, the same solution can be arrived at using different starting

points and different values of a.

21



Dolan (Ref 11:40) gives some rules of thumb that work quite well.

They are as follows:

(1) Choose an a equal to the minimum of the elements of the

matrices A, B, and C.

(2) Assure that U and V exist.

(3) Determine if the sequence generated by Eq (2.77) converges.

(4) If the sequence is converging, then iterate until less

than a specified tolerance.

(5) If the sequence diverges, increment a by a specified

amount.

The specified amount in step 5 could be determined by the elements

of the matrices A, B, and C. For example, if the range of the elements

was from .1 to 10 then an adequate adjustment would be t 1. But if the

range of the values of the elements was from 1 to 100 then an incremental

value of t 10 was adequate.

The thrust after obtaining an a to get convergence, was to find

a mn i.e., the minimum value of a to get the smallest number of itera-

tions for convergence within a specified tolerance. Experience shows

that if one plotted the number of iterations of convergence versus a,

the plot would roughly look like a plot of cosecant x versus x. Also

that a min lies in a certain interval and is not un ique. For example,

a min lied in the interval (.1329, .133251 for obtaining the six-iteration

convergence of X1

Dolan did not specify his specified tolerance or convergence

criteria. The only criteria used here was to take the difference

between successive approximations and see if it is less than a certain

epsilon, which was 1E-16 for our example. Note that it is possible to
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converge to a false solution using this difference criteria. One must

always check to see if the result satisfies Eq (2.76). An example of

this follows from Martensson (Ref 24:31-32).

Example 2.7

A = B = C D [ ] (2.81)
0 -i 0 -3 -1i-

Applying the iterative method, we find threc results:

X 0 ]X2 LW (2.82)

r 2.777777777777777 -1.111111111111111 1X3 = (2.83)

L -1. lllllllllllllll 1.444444444444444

Checking Eq (2.76) we find that X3 is not a solution. On the other

hand, if we apply the f(R) method, we do find that an X3 does exist,

namely

X3 = 1/9 6 1 (2.84)

L16 13

So this procedure is not without flaw. Incorrect solutions can appear.

To explore bounds, on the solutions of the Riccati matrix equation

to get an initial starting point, is not of prime.interest here. A good

treatment of bounds may be found by Kwon and Pearson (Ref 16) and

Bellman (Ref 5).
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Section 2. Solutions of Lyapunov Matrix Equations

The Lyapunov matrix equation arises most commonly in the stability

analysis of linear and non-linear systems. Other applications include

the analysis of beam gridworks (Ref 23). The numerical solution of

certain boundary value problems in partial differential equations

(Ref 9), and the design of optimal control systems with fixed control

structure (Ref 19). The form of the Lyapunov equation we will use is

the following:

AX - XB - C (2.85)

We could easily solve Eq (2.85) by the techniques in the preceding

section by setting the matrices associated with the quadratic or higher

order terms to zero. Consider the following example with one parameter

z, using the power series method.

Example 2.8

Let

i~~~ l1zz -iz--

A I B 0 1 -z C 1 (2.86)
0 1 0 l+z z

.0 0 1.

in Eq (2.85). Then for p I

X(X,z) 1] + X [1 (2.87)
-1 0 1 01 0

Y(X,z) [ + X [1 (2.88)
-1 0 -z 1
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Hence

X = X0 +XB= 1B(2.89)
1 1 1-z

Y - Y0 + AYI= L1 (2.90)

The next method gives an explicit solution of Eq (2.85) by using

the principal idempotents and nilpotents of the coefficient matrices A

and B.

Idempotent-Nilpotent Method. This method was conceived using ideas

from Browne (Ref 8:173,184-187,250-251) and relies upon the decomposi-

tion'of the coefficient matrices into their principal idempotent and

nilpotent components. Proof of the method can be found in Jones and

Lew (Ref 15).

Suppose A is mxm, B is nxn, C is mxn, and A, B, C belong to the

complex vector space of p by q matrices. Let A, B have the following

representation:

ml~m nl~n

A ajE + Nj; B - I bkFk 
+ M (2.91)

where the a are mI non-zero distinct complex eigenvalues and the bk

are n1 non-zero distinct complex eigenvalues. The fE } and {fFk} form

complete sets of orthogonal principal idempotents and the N jI and M k }

form complete sets of orthogonal principal nilpotents. See Browne for

method of obtaining idempotents and nilpotents. The following condi-

tions hold for A and B respectively:

25



Ej E I E j E I; EjEk O, J k
J=1

E N J NJ = N E ; EN k  i NN k = , j #k (2.92)

F2 n1 n
Fk Fk; I Fk = I; FkFZ O, k #

k=l

FkIX k MkFk; FkM - MkM 0, k 0 2 (2.93)

Theorem 2.8

Let A, B have the representation given in Eqs (2.91), (2.92),

(2.93). A sufficient condition for Eq (2.85) to have a solution, is

that whenever we have a pair of indices J,k such that aj bk, then

N jCFk - EjC14k  (2.94)

EjCFk - 0 (2.95)

m1im n1 n N CF -E

I E - 0 (2.96)
j-1 k- j k

The solution X is given by

m 1<m n <n

X I I j bk(2.97)
jml k-l aj bk

26



Example 2.9

Let

A [ 3 - B =C cE: (2.98)
0-1

L 1 1

Then

[2/4 2/4 -2/41 0 0 0 1 2/4 -2/4 2/41
A = 1 -1/4 5/4 -1/4 + 10/4 10/4 -10/4 3 3 1/4 -1/4 1/4

-3/4 3/4 1/4j [10/4 10/4 -10/4.J L3/4 -3/4 3/4 1

= a IE + N1 + a2E2; a, w 1; a2 = 3; N 2 w 0 (2.99)

inbIFI + b=2F 2 bI  -2; b2 vs -1; MI = M = 0 (2.100)

Finally

E1CF1  EICF 2  E2CF+ E2CF 2

a1-b1 a1-b2  a2-b1  a2-b2

[0 01
- 1/3 1/3 (2.101)

L 1/3 1/3 J

is a solution of Eq (2.85).
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III. Reducibility of Matrix Equations Containing

Several Parameters with Applications

The purpose of this chapter is to implement the knowledge gained

in the preceding chapter to effect a block reduction to any given state

matrix containing polynomial elements in several parameters. The two

parameter case is dealt with here, and the extension to n parameters is

straightforward. Two methods will be presented. First the Riccati-

Lyapunov method, then the Smith Form method. Finally an application to

system science will be examined.

Section 1. Riccati-Lyapunov Method

This method from Dolan (Ref 11) relies on solutions to the Riccati

and Lyapunov equations. Dolan's method is extended to the rectangular

case with parameters z1 ,z2 ,...,Z q

Theorem 3.1

The differential system x Ax in the form

B- Dx, 
(3.0)

-C A

where A mX ,B Cmxn Dnx m belong to the ring of matrices

R[.] - R[zl,z2 ... 9 z] is kinematically similar to

.r -B-DX D 1y
1 0 0 (3.1)

by the transformation
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_ I l[_ I]Il

where X is a solution to the Riccati matrix equation

AX + XB + C + XDX 0 (3.3)

Theorem 3.2

The following differential system similar in form to Eq (3.1)

y =y, (3.4)

where Anxn, Cnxm belong to R[z], is kinematically similar to

z = (3.5)
0B

by the transformation

y [ Jz (3.6)

where X is a solution to the Lyapunov matrix equation

AX - XB - C (3.7)

As one can see, the method is a two-stage block reduction. Repeated

application of the method to each block and sub-block will finally result

in a pure diagonal form.

The following is an example of a complete reduction for the constant

case.
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Example 3.1

Reduce [-3 -1 -21 E-B Dl
x(t) = 0 -2 0 x(t) = x(t) (3.8)

0 1 -1IC

From Example 2.4 a solution to Eq (2.0) is X [0 1]. Using Theorem

3.1, Eq (3.8) reduces to

= -2 0 y(t) [ Y(t) (3.9)
01 0 -iB

Now applying Theorem 3.2, Eq (3.9) reduces to

[-3 -1/3 07 ~ 4 o

z(t) 0 -2 0]z(t)- L0  Bjz(t) (3.10)

0 0 -1

using X [ ]as a solution to Eq (3.7).

To finish the reduction we apply Theorem 3.2 to

i(t1) [-3 -1131 [z1C(t) 1(3.11)
;2 (t)j 0 -2 ] 2(t)]

Using X - 1/3 as a solution to Eq (3.7) we have

-[ 0 ]w(t) (3.12)
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Hence from Eqs (3.9)-(3.12), Eq (3.8) is reduced to

F -3 0 01
Z(t) = 0-2 0) (t) (3.13)

L 0 -

which can be easily solved. Next follows a reduction in two parameters

s and z.

Example 3.2

Reduce

s 0 1 1 1 0

0 sz+l 1 1 1 -1

0 0 z z-s z-sz-l -1
x(t) = x(t) (3.14)

s 0 0

0 sz+l I

0 0 z

Applying Theorem 3.2 with a solution to Eq (3.7), namely

x 0 1 0 (3.15)

1 1 0

we have
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s 0 1

0 sz+l 1

0 0 z
y(t) = y(t) (3.16)

s 0 0

0 sz+l 1

0 0 z

For now, Eq (3.16) will be left in upper triangular form, even though

the system could easily be solved as is using back substitution. Next

a reduction method using an equivalence transformation to a Smith form

in two parameters s and z will be presented. The following treatment,

marking a great milestone to reductioa, is found in Frost and Storey

(Ref 12).

Section 2. Smith Form Method

The results here involve transformations of equivalence between

pxq matrices A(s,z) and B(s,z) of the form

B(s,z) - M(s,z)A(s,z)N(s,z) (3.17)

where M(s,z) and N(s,z) are unimodular matrices. The equivalence

transformation of most interest is where B(s,z) is a type of Smith form

of A(s,z) over R(s,z]. The Smith Form method for two parameters is

much like the method for the one-parameter case but requires no zeros

of a matrix over Rfs,z] for equivalence.

Theorem 3.3

A pxq matrix A(s,z) of rank t over R[s,z] can be reduced by

elementary transformations to the Smith form
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E(s,z) 0 , p < q

E(s,z) , p - q
S(s,z) = [Cz 1 >q(3.18)

where

E(s,z) diag[ei(s,z)] (3.19)

The diagonal elements of E(s,z) are the invariant polynomials over R[s,z]

of A(s,z), given by

d1 (s,z)

ei(sz) = d 1(s,z) i = 1,2,...,t (3.20)i d i- 1 sZ

where d. 1 and the determinantal divisor di (i 
= 1,2,..., t) is the

greatest common denominator of all the ith-order minors of A(s,z), and

where e.(s,z) is a divisor of e i+l(s,Z) for all i < t. That is, there

exists unimodular matrices M(s,z) and N(s,z) over R[s,z] such that

M(s,z)A(s,z)N(s,z) - S(s,z) (3.21)

Theorem 3.4

Two matrices A(s,z) a:id B(s,z) are equivalent over R[s,z] if there

exists unimodular matrices M(s,z) and N(s,z) such that Eq (3.17) is true.

It is easy to show that matrices are equivalent over R[s] if and

only if they have the same Smith form, but it does not mean that matrices

over R[s,zJ that have the same Smith form are equivalent. See the

following example.
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Example 3.3

A(s,z) = 0 sz+l 1 B(s,z) 0 sz+l 1 (3.22)

0 0 z 0 0 z

The Smith form for A(s,z) and B(s,z) is given by

S(sz) = S A(s,z) = S B(sz) = 0 i 0 (3.23)

L0 0 sz(sz+l)-

B(s,z) and A(s,z) have the same Smith form, but there does not

exist M(sz) and N(s,z) such that Eq (3.17) holds. Referring back to

Example 3.2, to complete the reduction via Smith form, replace block

forms by form in Eq (3.23). To get a stronger condition on equivalence

via the Smith form, the definition of zeros of a matrix are needed.

Zeros of a Matrix. On removal of the determinantal divisor di(s,z)

from all the ith-order minors of a matrix A(s,z), the remaining poly-

nomials may all be simultaneously zero for one or more values of the

pair (s,z). Such a value of (s,z) will be denoted an ith-order zero of

A(s,z).

Example 3.4

A(s,z) = s+z 0 has the same Smith form as the matrix

0 0 s

B(s,z) 0 s+z 0 but A(s,z) has first and second-order zero

0 
s
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(0,0), whereas B(s,z) has no first-order zeros and many second-order

zeros.

It is important to see that matrices over R[s,z] which have the

same Smith form over R[s,z] but do not have the same zeros are not

equivalent over R[s,z]. The equivalence transformation over R[s,z]

preserves the zeros of a matrix over R[s,z]. This brings us to the

following theorem.

Theorem 3.5

Two matrices A(s,z) and B(s,z) are equivalent over R[s,z] iff

A(s,z) and B(s,z) have no zeros and have the same Smith form.

The following is an example of reduction to Smith form using

Theorem 3.3.

Example 3.5

Reduce

[3+1 1+z(s+1) 0

x(t) - sz+l -(s+l)(s+z) x(t) (3.24)

0 s(s+l) s+1

using

M(s,z) - -1 1 0 (3.25)

s2 (8+() -s(s+l)2

N(s,z) 1 8+l (s+l) 2 (s+z)

.0 0 1J
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We have, using Theorem 3.3,

1 1
y(t) 0 1 0 y(t) (3.26)

0 0 s+l+s(s+l) 3(s4z)J

The Smith form works well with matrices containing parameters but

one has to work hard to get the M and N matrices. Using Theorem 3.3 as

a basis, one can easily extend the Smith form to the n-parameter case

by induction. This is shown by the following theorems.

Theorem 3.3A

A pxq matrix A(z) of rank t over R[z] can be reduced by elementary

transformations to the Smith form

[E(z) 0] , p< q
E(z) , p q

S(z) [Ez] P>q (3.18a)

where

E(z) - diag[ei(z)] (3.19a)

The diagonal elements of E(z) are the invariant polynomials over

R[z] of A(z), given by

dj(z)
e " (i) i A- 1,2,... ,t (3.20a)-- d._ --z

where do  1 and the determinantal divisor di(i = 1,2,...,t) is the
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greatest common denominator of all the ith-order minors of A(z), and

where ei(z) divides ei+i(z) for all i < t. That is there exists uni-

modular matrices M(z) and N(z) over R[L ] such that

M(z)A(z)N(z) S(z) (3.21a)

Theorem 3.5A

Two matrices A(z) and B(z) are equivalent over R[1] iff A(z) and

B(z) have no zeros and have the same Smith form.

Section 3. Application of Reducibility to Singular Systems

In this section we will illustrate the applicability of previous

theorems by use of an example in systems science. The following treat-

ment extends Lovass-Nagy (Ref 21).

Consider the linear system

D(A)x(t) - A(z)x(t) + B(z)u(t) (3.27)

where xnxl, Amxn , Bmxp , Dmxn and upxl belong to R[z 1,z2,...,z q] or in

shorthand, R[1]. Equation (3.27) could be considered as the state

equation of a control problem, where one hopes to find an input u(t)

that will force x(t) to some prescribed function of t. The following

theorems are necessary to analyze Eq (3.27).

Theorem 3.6

The equation

AXF- B (3.28)

has a solution if and only if
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AA BF F B (3.29)

and the general solution is given by

X - A BF + W - AAWFF (3.30)

where W is an arbitrary nxl matrix.

Theorem 3.7

The matrix equation

Ax - b (3.31)

has a solution if and only if

(I-AA-)b = 0 (3.32)

and the general solution is given by

X - A b + (I-A-A)h (3.33)

where h is an arbitrary nxl matrix.

An example of the reduction of Eq (3.27) follows.

Example 3.6

Let A(z), B(z), D(z) over R[z] be as follows:

A a B - ], D - [( 3.31)
1 o0 a2(z)]  bD) [l 0

where al, a2 , c and b are polynomial functions in the parameters

zl,...,Zq with coefficients in the field of real numbers. The system

in Eq (3.27) can be reduced to an equivalent system by the
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transformation x Py, where

P =(3.35)
01

and X is a solution to the Lyapunov equation

al(z)X - Xa2 (z) = c(z) (3.36)

Using the transformation we have

DPy = APy + Bu (3.37)

Premultiplying by P-1 gives

P DPy P-I~y + P- Bu (3.38)

Expanding we have

[l.x --x2  -[ap) a(z) _ u (3.39)

Dy A 1 y + Eu (3.40)

Using this decoupled system the procedure to find u(t) is much

simplified. For simplification let X 0 0. It is easy to see that a

generalized inverse of B is

B - 1] (3.41)

and that

- (3.42)

-b 3
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The consistency condition of Eq (3.31) implies that Eq (3.39) has a

solution u if and only if

(I-BB)(Dy-Ay) = 0 (3.43)

or expanding

[b 0 ( 0[ [al(z) 0 [y ) 0 (3.44)

If Y1 and y2 are any two functions satisfying Eq (3.43), then a particu-

lar solution of u(t) is given by

uCt) = B -Ay) (3.45)

or expanding

U(t) (l 02 ([ (3.46)[[ ,
il-a i(z)Y I  .

u(t) - [ 0 0] [fJ yl-a,(z)y, (3.47)

LY-2 (z.)y2 J
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IV. Conclusions and Recommendations

Reducibility of matrix equations containing several parameters

have been studied. Two reduction methods used were the Riccati-Lyapunov

method and the Smith Form method. The Riccati-Lyapunov method used

iterative and non-iterative schemes to find solutions to the Riccati

and Lyapunov equations. This method to effect a reduction works quite

well. Follow-on work should be the formulation and comparison of com-

puter algorithms that demonstrate the non-iterative solution schemes

delineated in Chapter II. For the iterative scheme, the regions of

convergence of parameter a should be examined more closely, the method

should be extended to include cubic and higher order terms, and ways of

obtaining bounds and initial starting matrices should be explored. The

Smith Form method used an equivalence transformation and is an alternate

form of reduction that can do the reduction in one step as opposed to

two in the previous method. One cannot say that the Smith Form method

is easier than the other because they are equally difficult. As it is

a lengthy process to obtain solutions of the Riccati and Lyapunov

equations, it is also laborious to find matrices M and N to effect a

reduction. Furthermore the effort is multiplied when the matrices

contain multiple parameters. Nevertheless the Smith Form method works

very well. Future work concerning the Smith Form method should include

the formulation of a computer algorithm that will reduce a given pxq

matrix containing several parameters to Smith form.

.4
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